自述篇(2):張國柱血行力學實驗室
文:張國柱(Chang,Kuo-Chu)
台大名譽教授
血行力學(hemodynamics)是一門融合生物醫學與物理力學的學問。血行力學包括血管力學和心臟力學,在循環系統中扮演相當重要的角色。於血管力學,主動脈輸入阻抗頻譜(aortic input impedance spectra)最足以描述穩態(steady)及脈態(pulsatile)血壓與血流之間的關係(pressure-flow relationship),繼而量化動脈管的物理性質。動脈管的物理性質包括穩態參數的血管阻力(vascular resistance)與脈態參數的動脈容積度(arterial compliance)、波傳輸時間(wave transit time)和波反射係數(wave reflection coefficient)。於心臟力學,時變彈性模型(time-varying elastance model)是現今最能描述心臟內質收縮力(intrinsic cardiac contractility)的理論,此模型可由左心室血壓-體積迴圈(left ventricular pressure-volume loop)推衍之。多年來,本實驗室致力於血行力學的探索,微薄的成果如下:
(一)單跳升主動脈壓訊號 量化 動脈波的物理特性
動脈波的物理特性也就是動脈波的反射特性,包括波傳輸時間和波反射係數。動脈壓複雜的波動現象,可化約為前進波與反射波的組成,這牽涉到波的傳輸速度和波的反射強度。波的傳輸速度與動脈管的硬化程度有關:硬化程度愈高,波速愈快,波傳輸時間就愈短。波的反射強度則決定於彈性管(elastic arteries)與阻力性血管(resistance arteries)之間的的匹配程度:匹配程度愈差,波反射係數就愈大。因此波傳輸時間愈短、波反射係數愈大,心臟的收縮負荷(systolic loading of the heart)就愈大,愈容易造成代償性的心臟肥厚,傷害心臓的舒張功能,進而減損心臟的收縮功能。
量化波反射特性的先決條件是必須在升主動脈處同步量得血壓波和血流波,爾後再利用波形拆解法(wave separation method)以及脈衝響應技術(impulse response technique)分別推算波反射係數和波傳輸時間。但在臨床應用上,由於血流波的訊號相對微弱,又容易受到雜訊的干擾,這將導致血流波的測量有其一定的難度。2006年,荷蘭的血行力學專家Westerhof等人使用量得的血壓波建構三角血流波以近似實際測得的血流波,成功地分析、得出相關性良好的波反射係數。可惜的是,在他們的論文中並沒有波傳輸時間的分析,因此也就無從探究動脈硬化(arterial stiffening)的指標了。
2017年,本實驗室承繼Westerhof 等人以動脈壓建構三角血流波的觀念,使用大白鼠(Wistar rat)為實驗動物,在不同疾病的情況下(如糖尿病或慢性腎衰竭),納入脈衝響應分析法,成功推算波傳輸時間,其決定係數(coefficient of determination)高達0.9641(請參考著作目錄4)。因此使用單跳主動脈血壓波的訊號,配合血行力學的技術便可合理地、優質地量化動脈波的反射特性。
診間手臂式血壓計的測量,雖然所得的參數有限,但有其門診的方便性,且具有流行病學的實用性。但已有一段時間,tonometry可非侵入式地量測血壓波,若能於門診診間引進tonometry的運作,配合本實驗室所發展的電腦程式,便可量化動脈波的反射特性。分析所得的波傳輸時間和波反射係數可作為動脈硬化的病程對心臟收縮負荷的探討,並了解心肌氧的供應與需求之間的平衡程度。相信本實驗室所發展的脈態分析技術能更完整地呈現病患的動脈物理特性,對疾病的診斷和藥物的療效評估,可提供更完整、更有用的臨床資訊。
(二)單跳左心室壓 量化 心臟內質收縮力
心臟的收縮功能(systolic function)主要的目的是提供身體各組織、器官合適的血流,以行代謝之所需。心臟收縮功能可用心輸出量(cardiac output)描述之。心輸出量決定於心跳(heart rate)、心肌收縮力(myocardial contractility)、前負荷(preload)和後負荷(afterload)等四個獨立因子,因此心臟收縮功能並不等同於心臟收縮力,彼此不可互換。
1960、70 年代以 Sagawa 和Suga 為首的日本學者提出『時變彈性模式(time-varying elastance model)』探討心臟內質收縮力,此模式可推導出左心室收縮末期血壓-體積關聯(left ventricular end-systolic pressure-volume relationship,LV ESPVR)。LV ESPVR在生理範圍內近似於直線,它有兩個重要的參數:(1)斜率,也就是收縮末期彈性(end-systolic elastance,Ees),(2)截距,也就是左心室壓為零時的體積截距(zero-pressure volume axis intercept,Vo)。Sagawa 和Suga 發現:Ees(而非Vo)可靈敏地反映心臟收縮力的變化,並且在恆定的心室收縮狀態下,Ees(而非Vo)不受心跳、前負荷以及後負荷的影響,因此Ees可用來當作心臟內質收縮力的良好指標。
由『時變彈性模式』推導LV ESPVR 的重要條件是必須要有三個或三個以上的左心室壓-體積迴圈,這在臨床應用上有其難度。理論上,若是能夠從射血收縮(ejecting contraction)的左心室壓推測合理的等體積血壓曲線(isovolumic pressure curve),那麼便可使用單跳血壓-體積迴圈(single pressure-volume loop)來推導LV ESPVR,繼而推算Ees和Vo,這在臨床工作上有其方便之處。
另一種推算LV Ees的方法就是左心室收縮末期血壓-心搏出量關聯(LV end-systolic pressure-stroke volume relationship,ESPVsR)。LV ESPVsR 可由單跳血壓-射血體積曲線(single pressure-ejected volume curve)推導之。對射血心跳(ejecting beat)而言,左心室射血體積可從升主動脈血流訊號的時間積分得到。LV ESPVsR計算所得的參數為:Ees和等效末期舒張體積(effective end-diastolic volume,Veed),Veed = Ved - Vo,Ved 是心室末期舒張體積(end-diastolic volume)。
因此在評估LV Ees時,必須同歩量得左心室壓和體積以建構ESPVR 或 同歩量得左心室壓和主動脈血流以建構ESPVsR。
臨床上評估心臟的收縮狀態,若能減少侵入式生理訊號的監測(例如僅僅使用所量得的左心室壓)就能推算Ees,那麼對病患將有很大的助益。基於這樣的構想,本實驗室致力於發展電腦技術,在僅僅量得左心室壓訊號的情況下,由左心室壓建構三角血流波以近似實際所量的主動脈血流波。經由左心室壓和所推衍的三角血流訊號來建構ESPVsR 便可計算LV Ees,進而評估心臟的收縮力。使用大白鼠為實驗動物,在不同疾病下(如糖尿病或慢性腎衰竭),我們發現這一構想是可行的:只須量得左心室壓便可成功地推算LV Ees,其決定係數高達0.9870(請參考著作目錄 2)。吾人期待將來能夠將這一觀念應用在臨床上以加惠病患。
(三)單跳左心室壓 量化 心臟收縮力和心臟內部阻力
以往學界對心臟收縮力學的探討往往偏重於使用單純彈性模式(pure elastance model)來量化左心室內質收縮力(LV Ees),但對心臟另一個重要物理特性的心室內部阻力(LV internal resistance) 不甚理解,甚至陌生。心臟內部阻力是決定瞬間脈態血流的重要因子,它與心肌橫橋動力學(myocardial crossbridge dynamics)有關。左心室內部阻力的改變可表現在各種不同的心臟疾病上,因此發展彈性-阻力模型(elastance-resistance model)來探討心臟收縮力及其內部阻力有其必要性。
由『彈性-阻力模型』的理論發展和實驗應用來說,它需要三個同時量測的生理訊號:(1)射血心跳(ejecting contraction)的左心室壓,(2)升主動脈血流,(3)無射血心跳(non-ejecting beat)的等體積左心室壓(isovolumic pressure)。等體積左心室壓的量測技術是以阻斷升主動脈的血流為手段,很顯然地,這在臨床應用上是不被允許的,或許這就是『彈性-阻力模型』引不起學界興趣的理由吧!這也是為什麼『彈性-阻力模型』在1980年代發展之後,僅在少數的動物實驗用來探討心臓之收縮彈性和內部阻力外,至今尚無應用在人類的文獻發表。
台大醫院心臟外科王植賢博士醫師等人在2019年為著解決這些難題,便嘗試使用單跳射血的左心室壓訊號建構等體積左心室壓以及升主動脈血流,藉此提供『彈性-阻力模型』在臨床應用上之概念。其方法是使用日本學者 Sunagawa 等人在1980年所建立之曲線湊合法(curve-fitting technique),從量得之射血心跳的左心室壓推算等體積左心室壓;其次是使用 Wang 等人在2017年所建立之脈態左心室壓四次微分法,建構與升主動脈血流相對應之三角血流波(triangular flow wave)。如此一來,只需單跳左心室壓便可量化心臟收收縮力和心臟內部阻力了(請參考著作目錄 1)。
著作目錄(*代表通訊作者)
1. Wang CH, Chang RW, Wu ET, Chang CY, Kao HL, Wu MS, Cheng YJ, Chen YS, Chang KC*. Quantification of cardiac pumping mechanics in rats by using the elastance-resistance model based solely on the measured left ventricular pressure and cardiac output. Pflügers Archiv-Eur J of Physiol 2019;471:935–947. https://doi.org/10.1007/s00424-019-02270-7
2. Wang CH, Chang RW, Chang CY, Wu MS, Kao HL, Lai LC, Young TH, Yu HY, Chen YS, ChangKC *. Quantification of contractile mechanics in the rat heart from ventricular pressure alone. Oncotarget 2017; 8:96161-96170. https://doi.org/10.18632/oncotarget.21815
3. Chang CY Chang, Chang RW, Hsu SH, Wu MS, Cheng YJ, Kao HL, Lai LC, Wang CH*, Chang KC*. Defects in vascular mechanics due to aging in rats: Studies on arterial wave properties from a single aortic pressure pulse. Front Physiol 8:503. doi: 10.3389/fphys.2017.00503
4. Chang RW, Chang CY, Lai LC, Wu MS, Young TH, Chen YS, Wang CH*, Chang KC*. Determining arterial wave transit time from a single aortic pressure pulse in rats: vascular impulse response analysis. Scientific Reports | 7:40998 | DOI: 10.1038/srep40998 (2017).
5. Chang RW, Chang CY, Wu MS, Yu HY, Luo JM, Chen YS, Lin FY, Lai LC, Wang CH*, Chang KC*. Systolic aortic pressure-time area is a useful index describing arterial wave properties in rats with diabetes. Scientific Reports | 5:17293 | DOI: 10.1038/srep17293 (2015).
6. Ko YH, Tsai MS, Chang RW, Chang CY, Wang CH, Wu MS, Liang JT, Chang KC*. Methylprednisolone protects cardiac pumping mechanics from deteriorating in lipopolysaccharide-treated rats. Front Physiol 6:348. doi: 10.3389/fphys.2015.00348.
7. Wang CH, Wu ET, Wu MS, Tsai MS, Ko YH, Chang RW, Chang CY, Chang KC*. Pyridoxamine protects against mechanical defects in cardiac ageing in rats: studies on load dependence of myocardial relaxation. Exp Physiol 2014;99.11:1488–1498.
8. Wang CH, Chang RW, Ko YH, Tsai PR, Wang SS, Chen YS, Ko WJ, Chang CY, Young TH, Chang KC*. Prevention of Arterial Stiffening by Using Low-Dose Atorvastatin in Diabetes Is Associated with Decreased Malondialdehyde. PLoS ONE 2014;9(3):e90471.
9. Wang CH, Wang SS, Ko WJ, Chen YS, Chang CY, Chang RW, Chang KC*. Acetyl-L-carnitine and oxfenicine on cardiac pumping mechanics in streptozotocin-induced diabetes in male wistar rats. PLoS ONE 2013;8(7):e69977.
10. Ko YH, Tsai MS, Lee PH, Liang JT, Chang KC*. Methylprednisolone stiffens aortas in lipopolysaccharide-induced chronic inflammation in rats. PLoS ONE 2013;8(7):e69636.
11. Wu MS, Chang CY, Chang RW, Chang KC*. Early return of augmented wave reflection impairs left ventricular relaxation in aged Fisher 344 rats. Exp Gerontol 2012;47:680–686.
12. Tsai MS, Ko YH, Hsu WM, Liang JT, Lai HS, Lee PH, Chang KC*. Enhanced aortic nerve growth factor expression and nerve sprouting in rats following gastric perforation. J Surg Res2011;171(1):205-211 (SCI; NSC 98-2314-B-002-054-MY2, NTUH 98-N1228).
13. Wu ET, Liang JT, Wu MS, Chang KC*. Pyridoxamine prevents age-related aortic stiffening and vascular resistance in association with reduced collagen glycation. Exp Gerontol 2011;46(6):482-488 (SCI; NSC 97-2320-B-002-040-MY3).
14. Chang KC*, Tseng CD, Lu SC, Liang JT, Wu MS, Tsai PS, Hsu KL. Effects of acetyl-L-carnitine and oxifenicine on aorta stiffness in diabetic rats. Eur J Clin Invest 2010;40(11):1002-1010 (SCI; NSC 97-2320-B-002-040-MY3).
15. Tsai MS, Chung SD, Liang JT, Ko YH, Hsu WM, Lai HS, Chang KC*. Enhanced expression of cardiac nerve growth factor and nerve sprouting markers in rats following gastric perforation: the association with cardiac sympathovagal balance. Shock 2010;33:170-178 (SCI; NTUH 97-N1006, NTUH 98-N1228, NTUH 97-FTN17, and NTUHYL 96-N017).
16. Chang KC*, Liang JT, Tsai PS, Wu MS, Hsu KL. Prevention of arterial stiffening by pyridoxamine in diabetes is associated with inhibition of the pathogenic glycation on aortic collagen. Br J Pharmacol 2009;157:1419-1426 (SCI; NTUH 97-N976).
17. Lin YD, Hsu KL, Wu ET, Tsai MS, Wang CH, Chang CY, Chang KC*. Autonomic neuropathy precedes cardiovascular dysfunction in rats with diabetes. Eur J Clin Invest 2008;38:607-614 (SCI; NTUH 95-000 323).
18. Wu MS, Liang JT, Lin YD, Wu ET, Y-Z Tseng YZ, Chang KC*. Aminoguanidine prevents deterioration of cardiac pumping mechanics in streptozotocin and nicotinamide-induced type 2 diabetes in rats. Br J Pharmacol 2008;154:758-764 (SCI; NTUH 95-000 323 & NSC 95-2320-B-002-066).
19. Chang KC*, Liang JT, Tseng CD, Hsu KL, Wu MS, Lin YT, Tseng YZ. Aminoguanidine prevents fructose-induced deterioration in left ventricular-arterial coupling in Wistar Rats. Br J Pharmacol 2007;151:341-346 (SCI; NTUH 95-000 323 & NSC 93-2320-B-002-066).
20. Chang KC*, Tseng CD, Wu MS, Liang JT, Tsai MS, Cho YL, Tseng YZ. Aminoguanidine prevents arterial stiffening in a new rat model of type 2 diabetes. Eur J Clin Invest 2006;36:528-535 (SCI; NTUH 94-S017 & NSC 94-2320-B-002-058).
21. Chang KC*, Hsu KL, Tseng CD, Lin YD, Cho YL, Tseng YZ. Aminoguanidine prevents arterial stiffening and cardiac hypertrophy in streptozotocin induced diabetes in rats. Br J Pharmacol2006;147:944-950 (SCI; NTUH 93-S021 & NSC 93-2320-B-002-062).
22. Chang KC*, Tseng CD, Chou TF, Cho YL, Chi TC, Su MJ, Tseng YZ. Arterial stiffening and cardiac hypertrophy in a new rat model of type 2 diabetes. Eur J Clin Invest 2006;36:1-7 (SCI; NTUH 94-S017 & NSC 94-2320-B-002-058).
23. Lin YT, Tseng YZ, Chang KC*. Aminoguanidine prevents fructose-induced arterial stiffening in Wistar rats: aortic impedance analysis. Exp Biol Med 2004;229:1038-1045 (SCI; NTUH 93-S021 & NSC 92-2320-B-002-087).
24. Chang KC*, Hsu KL, Chou TF, Lo HM, Tseng YZ. Aminoguanidine prevents age-related deterioration in left ventricular-arterial coupling in Fisher 344 rats. Br J Pharmacol2004;142:1099-1104 (SCI; NTUH 93-S021 & NSC 92-2320-B-002-087).
25. Chang KC*, Hsu KL, Peng YI, Lee FC, Tseng YZ. Aminoguanidine prevents age-related aortic stiffening in Fisher 344 rats: aortic impedance analysis. Br J Pharmacol 2003;140:107-114 (SCI; NTUH 92-S022 & NSC 88-2314-B-002-209).
26. Chang KC*, Hsu KL, Tseng YZ. Effects of diabetes and gender on mechanical properties of the arterial system in rats: aortic impedance analysis. Exp Biol Med 2003;228:70-78 (SCI; NTUH 92-S022).
27. Chang KC*, Lo HM, Tseng YZ. Systolic elastance and resistance in the regulation of cardiac pumping function in early streptozotocin-diabetic rats. Exp Biol Med 2002;227(4):251-259 (SCI; NSC 88-2314-B002-209).
28. Change KC*, Su MJ, Peng YI, Shao CC, Wu YC, Tseng YZ. Mechanical effects of liriodenine on the left ventricular-arterial coupling in Wistar rats: pressure-stroke volume analysis. Br J Pharmacol 2001;133:29-36 (SCI; NSC 89-2320-B002-115).
29. Change KC*, Peng YI, Tsai YF, Tseng YZ, Chen HI. Hypotensive effects of captopril on physical properties of the arterial system in young and adult rats. Biogerontology 2001;2(1):45-54 (SCI; NSC 87-2314-B-002-274 and NSC 88-2314-B002-209).
30. Change KC*, Peng YI, Lee FC, Tseng YZ. Effects of food restriction on systolic mechanical behavior of the ventricular pump in middle-aged and senescent rats. J Gerontol:BS2001;56A:B108-B114 (SCI; NSC 88-2314-B002-209).
31. Change KC*, Peng YI, Dai SH, Tseng YZ. Age-related changes in pumping mechanical behavior of rat ventricle in terms of systolic elastance and resistance. J Gerontol:BS 2000;55A:B440-B447 (SCI; NSC 87-2314-B-002-274 and NSC 88-2314-B002-209).
32. Change KC*, Chen TJ, Peng YI, Li TH, Tseng YZ. Impaired vascular dynamics in normotensive diabetic rats induced by streptozotocin: tapered T-tube model analysis. J Theor Biol2000;204:371-380 (SCI; NSC 83-0412-B-002-230).
33. Peng YI, Chang KC*. Acute effects of methoxamine on left ventricular-arterial coupling in streptozotocin-diabetic rats: pressure-volume analysis. Canadian J Physiol Pharmacol2000;78:415-422 (SCI; NSC 87-2314-B-002-274 and NSC 89-2320-B-002-115).
34. Chang KC*, Chow CY, Peng YI, Chen TJ, Tsai YF. Effects of food restriction on mechanical properties of arterial system in adult and middle-aged rats. J Gerontol:BS 1999;54A:B441-B447 (SCI; NSC 87-2314-B-002-274).
35. Chang KC*. Theoretical maximal flow of the left ventricle is sensitive to change in ventricular afterload. J Theor Biol 1998;194:409-417 (SCI; NSC 87-2314-B-002-274).
36. Chang KC*. Hypertensive effects of methoxamine on the arterial mechanics in rats: analysis based on exponentially tapered T-tube model. Eur J Pharmacol 1998;350:195-202 (SCI; NSC 86-2314-B-002-093-M04) .
37. Chang KC*, Tsai YF, Chow CY, Peng YI, Chen TJ. Age-related changes of arterial mechanical properties in rats: analysis using exponentially tapered T-tube model. J Gerontol:BS1998;53A:B274-B280 (SCI; NSC 86-2314-B002-093-M04).
38. Hu CT, Chang KC, Wu CY, Chen HI*. Acute effects of nitric oxide blockade with L_NAME on arterial haemodynamics in the rat. Br J Pharmacol 1997;122:1237-1243 (SCI; NSC 85-2331-B320-001).
39. Chang KC*, Kuo TS. Single-beat estimation of the ventricular pumping mechanics in terms of the systolic elastance and resistance. J Theor Biol 1997;189:89-95 (SCI; NSC 82-0412-B002-427).
40. Chang KC*, Kuo TS. Exponentially tapered t-tube model in characterizing arterial non-uniformity. J Theor Biol 1996;183:35-46 (SCI; NSC 81-0412-B002-634).
41. Chang KC*. Reply to Professor Burattini‘s comments on “Exponentially tapered t-tube model of systemic arterial system in dogs.” Med Eng Phys 1996;18:336-338 (SCI; NSC 81-0412-B002-634).
42. Chang KC*, Tseng YZ, Kuo TS, Chen HI. Impedance and wave reflection in arterial system: simulation with geometrically tapered T-tubes. Med & Biol Eng & Comput 1995;33,652-660 (SCI; NSC 81-0412-B002-634).
43. Chang KC*, Lo HM, Lin FY, Tseng YZ, Ko FN, Teng CM. Effects of dicentrine on the properties of syetemic arterial trees in dogs. J Cardiovas Pharmacol 1995;26:169-176 (SCI; NSC 83-0412-B002-230).
44. Hu CT, Chang KC, Kuo TS, Chen HI*. The correlation of cardiac mass with arterial haemodynamics of resistive and capacitive load in rats with normotension and established hypertension. Pflug Arch Eur J Physiol 1994;428:533-541 (SCI; NSC 80-0412-B016-133).
45. Chang KC*, Tseng YZ, Kuo TS, Chen HI. Impaired left ventricular relaxation and arterial stiffness in patients with essential hypertension. Clin Sci 1994;87:641-647 (SCI; NSC 82-0412-B002-427).
46. Chang KC*, Tseng YZ, Lin YJ, Kuo TS, Chen HI. Exponentially tapered T-tube model of systemic arterial system in dogs. Med Eng Phys 1994;16:370-378 (SCI; NSC 81-0412-B002-634).
47. Chen HI*, Chang KC, Liu HC, Lin CH. Acute adaptation and resetting of the baroreflex control of vascular resistance in the canine hindquarters and mesentery. Pflug Arch Eur J Physiol1993;424:276-284 (SCI; NSC 80-0412-B016-04).
48. Chang KC*, Kuo TS, Chen HI. Prediction of input impedance by an asymmetric T-tube terminated with an opportune complex load. J Chinese Inst Eng 1992;5:533-547 (NSC 79-0412-B016-137).
49. Chen HI*, Chang KC. Assessment of baroreflex threshold and saturation pressure: A new mathematic analysis. Jpn J Physiol 1991;41:861-877 (SCI; NSC 79-0412-B016-01).
50. Chen HI*, Chang KC, Hsieh KS. Vascular factors in isovolumic systemic and pulmonary circuit. Am J Physiol 1991;260:H201-H209 (SCI; NSC 78-0412-B016-03).
51. Chang KC, Hsieh KS, Kuo TS, Chen HI*. Effects of nifedipine on systemic hydraulic vascular load in patients with hypertension. Cardiovas Res 1990;24:719-726 (SCI; NSC 76-0412-B-016-37).
留言
張貼留言